On Compiling CNFs into Structured Deterministic DNNFs

نویسندگان

  • Simone Bova
  • Florent Capelli
  • Stefan Mengel
  • Friedrich Slivovsky
چکیده

We show that the traces of recently introduced dynamic programming algorithms for #SAT can be used to construct structured deterministic DNNF (decomposable negation normal form) representations of propositional formulas in CNF (conjunctive normal form). This allows us prove new upper bounds on the complexity of compiling CNF formulas into structured deterministic DNNFs in terms of parameters such as the treewidth and the clique-width of the incidence graph.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CV-width: A New Complexity Parameter for CNFs

We present new complexity results on the compilation of CNFs into DNNFs and OBDDs. In particular, we introduce a new notion of width, called CV-width, which is specific to CNFs and that dominates the treewidth of the CNF incidence graph. We then show that CNFs can be compiled into structured DNNFs in time and space that are exponential only in CV-width. Not only does CV-width dominate the incid...

متن کامل

On Compiling DNNFs without Determinism

State-of-the-art knowledge compilers generate deterministic subsets of DNNF, which have been recently shown to be exponentially less succinct than DNNF. In this paper, we propose a new method to compile DNNFs without enforcing determinism necessarily. Our approach is based on compiling deterministic DNNFs with the addition of auxiliary variables to the input formula. These variables are then ex...

متن کامل

On Compiling CNF into Decision-DNNF

Decision-DNNF is a strict subset of decomposable negation normal form (DNNF) that plays a key role in analyzing the complexity of model counters (the searches performed by these counters have their traces in Decision-DNNF). This paper presents a number of results on Decision-DNNF. First, we introduce a new notion of CNF width and provide an algorithm that compiles CNFs into Decision-DNNFs in ti...

متن کامل

Compiling Bayesian Networks by Symbolic Probability Calculation Based on Zero-Suppressed BDDs

Compiling Bayesian networks (BNs) is one of the hot topics in the area of probabilistic modeling and processing. In this paper, we propose a new method of compiling BNs into multi-linear functions (MLFs) based on Zero-suppressed BDDs (ZBDDs), which are the graph-based representation of combinatorial item sets. Our method is different from the original approach of Darwiche et. al which encodes B...

متن کامل

Quasipolynomial Simulation of DNNF by a Non-determinstic Read-Once Branching Program

We prove that DNNFs can be simulated by Non-deterministic ReadOnce Branching Programs (NROBPs) of quasi-polynomial size. As a result, all the exponential lower bounds for NROBPs immediately apply for DNNFs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015